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Abstract. 
 
The “strange attractor like” precursor, calculated from the Earth’s oscillating electric field registered at PYR and HIO 

monitoring sites located in Greece, is studied in the domain of T = 14 days. It is assumed that the generating precursory 
signals focal mechanism is triggered by the corresponding M1 (moon declination) tidal wave. The obtained results from 
the analysis of eight (8) cases of large (Ms>6.0R) EQs that occurred from March 18th, 2006 to November 17th, 2008 
suggest the validity of the method. Moreover, it is found that the specific methodology applied for T = 14 days behaves 
very closely to the same one when applied for T = 1 day even though there is a resolution decrease in the calculated 
predictive time window for the occurrence of the oncoming large EQ.   

It is speculated that this type of precursor, once it is present in one distinct oscillating component of the seismic 
precursory generated electric field, then, most probably, it is present in most of its other oscillating components. The 
latter suggests the investigation of the preseismic precursory electric field at its longer wavelengths i.e. components 
triggered by the Ssa (6 months, moon declination) oscillating components.     

The large value of the obtained success rate (predicted EQs / total no. of large EQs) suggests its use as a time 
prediction tool in the domain of the “short-term prediction”. 

 
 

1. Introduction. 
    
After a strong earthquake has occurred at a seismogenic area, the immediate question which arises, is: when will it strike 

again? The seismologists worked out firstly this question because of its societal significance. This question implies, although in 
an indirect way, that the seismogenic area is already known and the expected magnitude of the future earthquake is almost 
similar, in magnitude, to the previous one or strong enough, so that it must be taken seriously into account. 

At the early steps of the scientific research for a successful earthquake prediction, the recurrence times of strong 
earthquakes, at a specific seismogenic area, were analyzed with statistical methods. The obtained results mainly refer to the 
long-term prediction. The fact that strong earthquakes are not very frequent prohibits increased time resolution of the statistical 
methods which are used, mainly due to the fact that the “sampling interval” is too long. A different statistical scheme, analyzes 
the frequency – magnitude dependence and their logarithmic proportionality, the “b-value” (Ma 1978, Smith 1986, 
Molchan et al. 1990) and variations of coda Q (Jin and Aki 1986, Sato 1986). Major earthquakes have been preceded by 
seismic quiescence. Kanamori (1981), Lay et al. (1982), Wyss et al. (1988) reviewed the methodology. Scholz (1988) studied 
the mechanisms, which could be responsible for this phenomenon, while Schreider (1990) proposed a statistical basis for 
making reliable predictions, based on quiescence. Gupta (2001) used the same methodology for the medium-term forecast of 
the 1988 northeast India earthquake. As a result of this inability of the statistical methodologies to provide adequate time 
resolution (predictive time window for the future strong earthquake), which could be of some use for the society, different 
methodologies, more sophisticated, were developed. The algorithm CN is one of them (Keilis-Borok et al. 1990). This 
algorithm allows diagnosis of the times of increased probability of strong earthquakes (TIPs).  The CN stands for the 
application of the TIPs methodology for California – Nevada, while a version addressed to magnitudes larger than M=8R 
is assigned the name “algorithm M8” (Keilis-Borok and Kossobokov 1990; Romachkova et al. 1998).   Varnes (1989) 
studied the accelerating release of seismic energy or seismic moment either to time elapsed, or to time remaining, in 
the period preceding a main shock. He introduced empirical relations, having origins in both experiment and physical 
theory, going back many decades. The acceleration process was analyzed in laboratory experiments and was applied 
before strong earthquakes in Kamchatka and Italy by Di Giovambattista and Tyupkin (2001). 
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Narkunskaya and Shnirman (1990) proposed the multi-scale model of defect development. Following this 
methodology and through simulation of the lithosphere, to a hierarchical discrete structure, which consists of some 
singularities, allows one to predict the time of appearance of “large” defects. 

According to the Load-Unload Response Ratio (LURR) methodology, when a system is stable, its response to 
loading corresponds to its response to unloading, whereas when the system approaches an unstable state, the response 
to loading and unloading becomes quite different (Yin et al. 1995, 1996, 2002). 

Seismic quiescence and accelerating seismic energy release can be further detailed by the use of the RTL 
algorithm. This algorithm (Sobolev 2001, Sobolev et al. 2002, Di Giovambatista et al. 2004) analyze the RTL (Region, 
Time, Length) prognostic parameter, which is designed in such a way, to have a negative value if, in comparison with 
long-term background, there is a deficiency of events in the time – space vicinity of the tested area. The RTL parameter 
increases if activation of seismicity, takes place. 

Seismicity “Pattern recognition algorithms” such as “ROC” – range of correlation – and “Accord” were used by 
Keilis-Borok et al. (2002) to identify premonitory patterns of seismicity, months before strong earthquakes in Southern 
California. Another version of the pattern recognition methodology takes into account the earthquake intensities, in order 
to forecast the time of occurrence (Holliday et al. 2006). 
   In the RTP (reverse tracing of precursors) methodology, the precursors are considered in reverse order of their 
appearance (Keilis-Borok et al. 2004).  

The “Space-time ETAS” methodology (Ogata et al. 2006) is a further extension and improvement of the seismic 
quiescence methodology. ETAS stand for Epidemic Type Aftershock Sequence. 
   Yamashina (2006) used the statistical test of time shift for prediction studies in Japan. 

The algorithm SSE (subsequent strong earthquake) was designed for prediction of relatively strong earthquakes 
following a strong earthquake. A subsequent, strong earthquake can be an aftershock or a main shock of larger 
magnitude.  

The SSE algorithm resulted from the analysis of 21 case histories in California and Nevada. Then, it was, 
retrospectively, tested in 8 seismic regions of the world (Gvishiani et al. 1980, Levshina et al. 1992, Vorobieva et al. 
1993, Vorobieva et al. 1994, Vorobieva 1994, Vorobieva 1999). 

The statistical treatment of the earthquakes, which occurred at a specific seismogenic area in the past, has been 
proved more or less sufficient for the “medium-term or long-term” earthquake prediction.  

However, in terms of the “short-term” prediction the seismological literature has not even a successful case to 
present at all. Apart from the long time sampling interval, which elapses between two consecutive strong earthquakes in 
the same seismogenic area, there is an intrinsic difficulty in using statistical methods towards a successful, short-term 
earthquake prediction. The latter was analyzed in detail by Thanassoulas (2007). 

An entirely different approach towards the short-term earthquake prediction was followed by other researchers.  
Varotsos et al. (1981) used the SES (seismic electric signals), generated short before (in term of days) the occurrence of 
an earthquake in order to forecast the time of its generation. Details of this methodology were presented by Varotsos 
(2005). A further development of this methodology is the study of the behaviour of seismicity in the area candidate to suffer 
a main shock. This area is investigated after the observation of the Seismic Electric Signal activity until the impending main 
shock (Sarlis et al. 2008; Varotsos et al. 2008). In this method, although its initiation is made by the generation of the SES, the 
conclusions about the occurrence time of the large pending EQ are the result of the analysis of the, after the SES generation, 
following seismicity.  

 A quite different method for the analysis of the Earth’s electric field towards short-term earthquake prediction was 
followed by Thanassoulas (1982), Thanassoulas and Tselentis (1986, 1993). In these studies it was shown that the Earth’s 
electric field starts to oscillate at a period of T = 24 hours, triggered by the corresponding tidal components (K1, P1) of the 
lithospheric oscillation, short before the occurrence of the pending EQ. The lithospheric tidal oscillations in return trigger the 
generation of the oscillating electric field through the activation of large scale piezoelectric mechanisms. A further development 
of the method was achieved (Thanassoulas et al. 2008a,b), by considering the earth’s oscillating field registered by two distant 
monitoring sites and by applying mapping techniques (Nusse and Yorke, 1998; Korsch, Jodl, and Hartmann, 2008). 

The triggering of the large scale piezoelectric mechanism in the lithosphere (Thanassoulas, 2007) has been adopted 
as the main mechanism of generating preseismic electric signals of any type observed so far (see the particular case of 
SES, Thanassoulas, 2008). Therefore, it is worth to investigate the presence of the “strange attractor like” behaviour 
of the Earth’s electric field at its longer wavelength content before the occurrence of any large EQ. In particular, the 
Earth’s electric field will be considered at periods of T = 14 days. This specific period of the oscillating electric field 
corresponds to the M1 tidal wave, and therefore to the lithospheric oscillation too, caused by the Moon declination.  

The aim of this work is: 
a) to investigate the presence of the “strange attractor like” precursor in the recorded Earth’s electric field data (of 

period T=14 days), in a rather long time window, in relation to the occurrence time of large EQs (M >6.0R) 
which did occur in the same time window and  

b) to evaluate the predictive capability of the “strange attractor like” precursor calculated by the Earth’s electric 
oscillating field at a period of T = 14 days.  

  
 

2.  The data. 
 
The study period spans for 30 months from March 18th, 2006 to November 17th, 2008. This period of time was selected 

due to the fact that HIO monitoring site was established on March 18th, 2006. Therefore, a pair of monitoring sites of the 
Earth’s electric field was formed with PYR monitoring site, having almost similar technical specifications of receiving dipoles 
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(Thanassoulas, 2007) and consequently the “strange attractor like” methodology can be applied on the pair of the 
recorded data. The location of the PYR and HIO monitoring sites is presented in figure (1).  

During this time period eight (8) large earthquakes occurred with magnitude Ms>6.0R. Their date, depth of occurrence, 
and magnitude are tabulated in TABLE – 1. These EQs are numbered from (1) to (8). This number denotes the corresponding 
EQ in the map of figure (1).  

 
 
 

      TABLE – 1.    
 
                         

                       Earthquake 
 

   Depth 
  (in Km)  Magnitude  (Ms)  

    1.   March 25th,                    2007           15             6.0 
    2.   January 6th,                  2008          86           6.6 
    3.   February14th,              2008         41           6.7 
    4.   February 20th ,            2008        25           6.5 
    5.   June 8th,                        2008           25            7.0 
    6.   June 21st  ,                     2008       12            6.0 
    7.   July 15th,                         2008       56            6.7 
    8.   October 14th ,                2008           24            6.1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1. Location (blue circles) of the EQs of Ms>6.0R which occurred in Greece during March 18th, 2006 to November 
17th, 2008. The numbers refer to TABLE - 1. The colour coded areas correspond to areas of large seismic potential while the 

thick grey lines depict the deep lithospheric fracture zones (Thanassoulas, 2007).  
 
 
 

The Earth’s electric field which was recorded, during the study period, by the PYR monitoring site is presented in 
figure (2). The large EQs that occurred in the same period are denoted by red bars. 
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Fig. 2. Raw data (black line) of the Earth’s 
electric field recorded by PYR monitoring site 
during the period from March 18th, 2006 to 
November 17th, 2008. The red bars indicate the 
occurrence of large (Ms>6.0R) EQs. 

 
The data of figure (1) were band-pass filtered (FFT) with a center filter period of Tc = 14 days, a bandwidth of 28 

days and are presented in figure (2a).  
                                 

 

 
 
 
Fig. 2a. Oscillating data (Tc = 14 days, black 
line) of the Earth’s electric field obtained from 
PYR raw data (after band-pass filtering) during 
the period from March 18th, 2006 to November 
17th, 2008. The red bars indicate the occurrence 
of large (Ms>6.0R) EQs. 

 
 

The Earth’s electric field which was recorded, during the study period, by the HIO monitoring site is presented in 
figure (3). The large EQs that occurred in the same period are denoted by red bars. 

 

  

 
 
 
Fig. 3. Raw data (black line) of the Earth’s 
electric field recorded by HIO monitoring site 
during the period from March 18th, 2006 to 
November 17th, 2008. The red bars indicate the 
occurrence of large (Ms>6.0R) EQs. 

 
 

The data of figure (3) were band-pass filtered (FFT) with a center filter period of Tc = 14 days, a bandwidth of 28 days 
and are presented in figure (3a). 

 

  

 
 
 
Fig. 3a. Oscillating data (Tc = 14 days, black 
line) of the Earth’s electric field obtained from 
HIO raw data (after band-pass filtering) during 
the period from March 18th, 2006 to November 
17th, 2008. The red bars indicate the occurrence of 
large (Ms>6.0R) EQs. 

 
The depicted data in figures (2a) and (3a) were used to compile the corresponding phase maps (Thanassoulas et al. 

2008a) for time intervals related to the occurred EQs. The days which were characterized by the presence of ellipses were 
given a value of (1), while the presences of hyperbolas (absence of ellipses) were given a value of (0). Therefore, the entire 
study time period (in days) is characterized by “0”s and “1”s. It is clear that all along the presence of an ellipses it will 
characterize the corresponding time period (in days) with “1”s. The aim of this study is to compare the time of occurrence of 
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each large EQ to the presence of any ellipse (consecutive “1”s) short before, during and after its occurrence. A graph which 
will present EQ time of occurrence and magnitude against the presence of an ellipse has to present EQ magnitudes and “1”s 
in a normalized form so that comparison is easily facilitated. To this end the time series of “1”s and “0”s were convolved with 
the weights of a filter of seven (7) days long and with the following weights: 1, 2, 3, 4, 3, 2, 1. When this filter is applied on a 
series of consecutive “1”s it produces a centre value of (16). This value is in excess than the larger magnitude observed of Ms 
= 7.0R. So the final value of the filter weights were converted to (1, 2, 3, 4, 3, 2, 1) /3. With this modification the output of 
the filter does not exceed the value of 5.333 and consequently the corresponding graph of EQs time of occurrence – 
magnitude against the filtered data of presence (“1”s) or absence (“0”s) of ellipses will be nicely presented. This 
operation is made clearer from the following examples of real EQs.  

  
 

3.  Examples presentation. 
 

For each EQ of TABLE – 1 the corresponding phase map has been compiled for three (3) distinct and consecutive 
periods of time. The first one corresponds to the period before the occurrence of the EQ while no any “strange attractor 
like” precursor was present, the second period corresponds to the one short before the EQ occurrence while the 
“strange attractor like” precursor was present, and the last one corresponds to the period after the occurrence of the EQ 
while the “strange attractor like” precursor has vanished. In cases when no “strange attractor like” precursor exists at all 
then only one phase map is compiled for the entire before – during and after the EQ occurrence period of time. The 
presence of the “strange attractor like” precursor is also presented as a graph vs. magnitude and time of occurrence of 
the corresponding EQ. Following are presented the results of the analysis of the EQs of TABLE – 1.  
 
 
3.1. March 25th, 2007, Ms = 6.0R, Z=15Km 
 

 
 

Fig. 4. “Strange attractor like” precursor presence (blue bars) vs. EQ magnitude and time of occurrence (red bar). 
 

 

     
       
    20070219 – 20070310                 20070311 – 20070331                 20070401 – 20070420 

 
Fig. 5. Compiled phase maps for the corresponding periods of time (in yyyymmdd mode). The blue concentric circles 

denote the EQ location. 
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3.2. January 6th, 2008, Ms = 6.6R, Z=86Km 
 

   
                                                                                              

    20080101 - 20080112 
 

Fig. 6. “Strange attractor like” precursor absence, EQ time of occurrence and magnitude (left, red bar) and the compiled 
phase map (right) for the corresponding period of time (in yyyymmdd mode). The blue concentric circles denote the EQ 

location. 
 
 
3.3. February14th, 2008, Ms = 6.7R, Z=41Km and February 20th, 2008, Ms = 6.5R, Z=25Km 
 

 
 

Fig. 7. “Strange attractor like” precursor presence (blue bars) vs. EQs magnitude and time of occurrences (red bars). 
 
 

     
                
              20080107 – 20080127                   20080128 – 20080214                     20080215 – 20080306    

 
Fig. 8. Compiled phase maps for the corresponding periods of time (in yyyymmdd mode). The blue concentric circles 

denote the EQs location. 
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3.4. June 8th, 2008, Ms = 7.0R, Z=25Km and June 21st, 2008, Ms = 6.0R, Z=12Km 
 
 
 

   
 

Fig. 9. “Strange attractor like” precursor absence, EQs time of occurrence and magnitude (red bars). 
 
 
 
 

   
 

                                20080529 – 20080617                                           20080610 – 20080630 
 
 

Fig. 10. Compiled phase maps for the corresponding periods of time (in yyyymmdd mode). The blue concentric circles 
denote the EQs location. 
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3.5. July 15th, 2008, Ms = 6.7R, Z=56Km 
 
 
 

 
 

Fig. 11. “Strange attractor like” precursor presence (blue bars) vs. EQs magnitude and time of occurrences (red bars). 
 
 
 
 
 

     
 

                     20080622 – 20080710                 20080711 – 20080802                  20080803 – 20080823  
 
 
 

Fig. 12. Compiled phase maps for the corresponding periods of time (in yyyymmdd mode). The blue concentric circles 
denote the location of the EQ of Ms=6.7R magnitude.  
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3.6. October 14th, 2008, Ms = 6.1R, Z=24Km 
 
 

 
 

Fig. 13. “Strange attractor like” precursor presence (blue bars) vs. EQ magnitude and time of occurrence (red bar). 
 
 
 

     
 

                20080911 – 20081001                          20081002 – 20081018                  20081019 - 20081117 
 

Fig. 14. Compiled phase maps for the corresponding periods of time (in yyyymmdd mode). The blue concentric circles 
denote the EQ location. 

 
4.  Discussions – conclusions. 

 
The results obtained from the application of the “strange attractor like” method on the data registered by the PYR and HIO 

monitoring sites are tabulated in TABLE – 2. Its first column contains the numbering, date, magnitude and depth of occurrence 
of each EQ. The second column indicates whether a precursor was present (Y) or not (N). The third column indicates the days 
when the precursor was initiated before the EQ occurrence time (in days) and the forth column presents the duration of the 
precursor in days. 

TABLE – 2. 
 

                       Earthquake 
            (date, magnitude, depth) 

Precursor
presence 

  Precursor initiation 
  before EQ (in days)

 Precursor duration 
        (in days) 

1. March 25th, 2007,         Ms = 6.0R, Z=15Km     Y             15             19 
2. January 6th, 2008,     Ms = 6.6R, Z=86Km     N               -              - 
3. February14th, 2008,   Ms = 6.7R, Z=41Km     Y             19             19 
4. February 20th , 2008, Ms = 6.5R, Z=25Km     Y             26             19 
5. June 8th, 2008,             Ms = 7.0R, Z=25Km     N              -              - 
6. June 21st  , 2008,          Ms = 6.0R, Z=12Km     N              -              - 
7. July 15th, 2008,            Ms = 6.7R, Z=56Km     Y              5             25 
8. October 14th , 2008,     Ms = 6.1R, Z=24Km     Y             14             19 
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The average value of the precursor initiation in days is: Precursor initiation = 16 (15.8) days, while the corresponding 
average value for the precursor duration is: Precursor duration = 20 (20.2) days. Both values are larger than the corresponding 
ones (precursor initiation = 9 days, precursor duration = 7 days) for T = 1 day (Thanassoulas et al. 2008b). The observed 
difference in both values is attributed to the longer wavelength used in this particular case.  

An exceptional case of the studied precursor is the one of figure (11). Although the precursor was initiated very short 
before the corresponding large EQ (July 15th, 2008, Ms = 6.7R, Z=56Km) its duration was prolonged by the smaller EQs that 
did occur (30/7 – 3,4/8/2008, Ms =  5.5R, 5.8R, 5.5R) just at the end of the precursor.   

By taking into account the results presented in the second column of the latter table it is possible to initially evaluate the 
behaviour of the method in terms of true prediction probabilities. Thus, having eight (8) data samples (Dtotal) as input and a 
total of five (5) predicted (Ppredicted) cases, the success rate (Srate) is defined as: 

  
            Srate = Ppredicted  / Dtotal        (1)     

 
by taking into account the values of:                   Ppredicted = 5   and   Dtotal  = 8    (2) 

 
then Srate takes the value of: 
                        Srate = 5 / 8 = 0.625   or 62.5%    (3) 

 
The calculated Srate value is worth to consider only if it is much larger than the results Srandom obtained from a random 

method used for EQ occurrence time selection. Therefore, Srate will be compared to the Srandom that results from a completely 
random guess selection for the times of occurrence of five (5) EQs for the same period of time. This analysis is performed as 
follows: 

The entire study period of time (March 18th, 2006 to November 17th, 2008) is divided into 60 consecutive sub-periods of 
15 days each. The selection of 15 days length for each sub-period of time was based on two reasons. The first is that it is very 
close to one (1) wavelength (T = 14 days) of the M1 tidal component. The second is that it eases further calculations. 
Moreover, it is initially assumed that only one (1) EQ will occur in the study period. It is clear that this EQ can occur in any one 
of the 60 considered sub-periods. Consequently, the probability (P1) to guess by chance successfully the sub-period of its 
occurrence is:   

 
                   P1 = 1/60 = 1.66%     (4)   

 
If now it is required to guess the sub-period of occurrence of one (1) EQs out of eight (8) which occur in the entire study 

period, then the probability P1/8 value to guess successfully by chance the sub-period of its occurrence becomes eight (8) 
times larger than P1:   

 
                   P1/8 = 8/60 = 8P1      (5)         

 
Next, let us consider the case when two EQs must be guessed. The first EQ has a P1 value of 8/60. The second EQ has a 

probability value P2 as: 
 

 P2  = 7/59        (6)    
 

due to the fact that only seven (7) EQs and only 59 sub-periods remain to be guessed after the first guess. Therefore, the 
probability P2/8 to guess successfully by chance two (2) EQs is:  

 
P2/8 =   (8/60) * (7/59)     (7)      

 
Following this scheme it is possible to calculate the probability P5/8 to guess successfully by chance five (5) EQs out of 

eight (8) in the time span of 60 sub-periods of time of the study period as follows: 
 

 P5/8 =  (8/60) * (7/59) * (6/58) * (5/57) * (4/56)  (8)        
   

P5/8 =  0.000010253    or    P5/8 =  0. 0010253%  (9)   
 
The calculated “by chance” probability value of P5/8 of equation (9) will be compared to the actual success rate Srate of 

equation (3): 
 

 (Srate  /  P5/8 ) = 0.625 / 0.000010253 = 60957.768 (10)             
 
Equation (10) suggests that the results obtained from the application of the specific methodology are more than worth to 

be considered and by no means are “just a coincidence”. 
From the eight (8) studied EQs three of them (2, 5, 6) from TABLE – 2 did not produce any such precursor at all. For two 

of them (2, 6) a rational explanation can be given by taking into account the p-velocity (Mueller and Landisman, 1966) and 
electrical properties distribution (Blohm et al. 1977, Thanassoulas 2007)) in the lithosphere. The no. (2) EQ did occur at a 
depth of 86Km where the crystalline properties of the lithosphere are small while plasticity effects are increased. Therefore, no 
electric signals are expected to be generated. That had been pointed out by Thanassoulas (2007) who suggested that not all 
large EQs can be predicted by electric methods, but only the ones generated in the crystalline part of lithosphere that is 
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capable of generating electric fields due to its mechanical deformation. The EQ of no. (6) occurred at a depth of 12 Km that is 
very close to the Fortsch boundary where there is a drastic change of the velocity of P seismic waves. EQs which occur at a 
depth of a few Km from the ground surface are not expected to generate strong electric signals. Finally, for the EQ of no. (5), 
since it occurred at a depth of 25 Km, there is not any rational explanation and its behaviour remains a big question mark. 

Taking into account the previous paragraph it is possible to recalculate the Srate with different values for Ppredicted and Dtotal   
by ignoring EQs of no. (2) and (6) as follows: 
 

Ppredicted = 5   and   Dtotal  = 6    (11)   
 and           
 

Srate = 5 / 6 = 0.833   or 83.3%    (12)   
 
Moreover, having shown the presence of the “strange attractor like” precursor before large EQs in the frequency band of T 

= 14 days, it is worth to compare it with the presence, for the same period of time, of the corresponding attractors for T = 1 
day (Thanassoulas et al. 2008b). The results of this analysis are presented in the following TABLE – 3.  

 
TABLE – 3. 

 
                       Earthquake 
            (date, magnitude, depth) 

  Precursor  presence  
       of T=14 days 
            

   Precursor presence  
          of T=1day 
             

1. March 25th, 2007,         Ms = 6.0R, Z=15Km                 Y               Y 
2. January 6th, 2008,     Ms = 6.6R, Z=86Km                 N               N 
3. February14th, 2008,   Ms = 6.7R, Z=41Km                 Y               Y 
4. February 20th , 2008, Ms = 6.5R, Z=25Km                 Y               Y 
5. June 8th, 2008,             Ms = 7.0R, Z=25Km                 N               Y 
6. June 21st  , 2008,          Ms = 6.0R, Z=12Km                 N               Y 
7. July 15th, 2008,            Ms = 6.7R, Z=56Km                 Y               N 
8. October 14th , 2008,     Ms = 6.1R, Z=24Km                 Y               Y 

 
An immediate look at Table - 3 reveals that the EQ no.2, which occurred at large (z=86Km) depth, did not produce either 

type of precursor. This fact supports what was proposed earlier concerning the absence of crystalline lithospheric properties at 
such depths. On the other hand, there is a remarkable similarity in the generation of these types of seismic precursors. The 
calculated Srate (ignoring EQ no.2) for the case of T = 1 day and T = 14 days are:  

 
T = 1 day:       Srate    = 6/7 = .857 or 85.7%   (13)   

 
T = 14 days:   Srate    = 5/7 = .714 or 71.4%   (14)   

 
These results can be explained by an electric precursors generating mechanism, in the lithosphere, that is triggered in 

both periods (T = 1 / 14 days). In this case, the well-known tidal waves (M1, K1, P1) are the most probable triggering 
mechanism. Since the triggered electric precursor generating mechanism is unique, its generated electric field components 
(different oscillating electric fields) will behave in more or less the same way. Therefore, the compatibility of Srate values 
calculated at (13) and (14) is well justified. The latter suggests the future investigation of the generation of “strange attractor 
like” precursors in the time window suggested by the Ssa (T = 6 months, Moon declination) tidal component. If this 
mechanism is valid then the same “strange attractor like” precursors must exist, in this case too, before large EQs. More 
generally, this type of precursor’s presence effect, probably, holds for the entire electric frequency spectrum generated by an 
electric field generating mechanism. The triggering mechanism of the tidal waves simply intensifies specific wavelengths of the 
electric field which correspond to certain mechanical triggering wavelengths.    

The use of different wavelengths in the calculation of the “strange attractor like” precursor has as an effect the change of 
the resolution obtained in the calculation of the time window in which a large EQ will occur. In the case of T = 1 day it was 
shown that there was a distinct initiation and duration in days of the precursor before the EQ occurrence (Thanassoulas et al. 
2008b). This was not observed for the T = 14 days case, on the contrary, the resolution capability decreased.  On the other 
hand, in the T = 14 days case, shorter wavelengths electric interference, which could accidentally modify the used data, is 
filtered out. Therefore both wavelengths have their drawbacks and merits.  

Finally, it can be said that the application of the “strange attractor like precursor”, in the domain of T = 14 days, is a 
method that can provide valuable information concerning the time of occurrence of an oncoming large EQ. Therefore it can 
contribute a lot towards the “short-term earthquake prediction”. 
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